- Артикул:00-01057085
- Автор: Дж. Л. Дуб
- Обложка: Твердая обложка
- Издательство: Издательство иностранной литературы (все книги издательства)
- Город: Москва
- Страниц: 608
- Формат: 70x108 1/16
- Год: 1956
- Вес: 891 г
- Серия: Учебник для ВУЗов (все книги серии)
Репринтное издание
Книга представляет собой единственное в мировой литературе систематическое и строго научное изложение теории вероятностных (стохастических) процессов - новой ветви теории вероятностей, имеющей весьма важные применения в физике и технике. В книге собран обширный материал, разбросанный по журнальным статьям, дано новое изложение многих вопросов и приведены ранее не опубликованные результаты автора. Книга предназначена в основном для студентов старших курсов университетов и аспирантов, специализирующихся по теории вероятностей и смежным дисциплинам, но может быть полезной также и физикам-теоретикам и механикам
Оглавление
Предисловие переводчиков
Из предисловия автора
Глава І. Введение. Теоретико-вероятностные основы
§ 1. Необходимый запас математических знаний
§ 2. Основное пространство
§ 3. Случайные величины и распределения вероятностей
§ 4. Различные понятия сходимости
§ 5. Семейства случайных величин
§ 6. Изображения в произведениях пространств
§ 7. Условные вероятности и математические ожидания
§ 8. Условные вероятности и математические ожидания: общие свойства
§ 9. Условные распределения вероятностей
§ 10. Повторные условные математические ожидания и вероятности
§ 11. Характеристические функции
Глава II. Определение вероятностного процесса. Основные классы процессов
§ 1. Определение вероятностного процесса
§ 2. Задание вероятностной меры
§ 3. Гауссовские процессы: понятия в узком и широком смыслах
§ 4. Процессы с взаимно независимыми значениями
§ 5. Процессы с некоррелированными или с ортогональными значениями
§ 6. Марковские процессы
§ 7. Мартингалы
§ 8. Стационарные вероятностные процессы
§ І0. Процессы с некоррелированными и с ортогональными приращениями
Глава III. Процессы с взаимно независимыми значениями
§ 1. Общие замечания
§ 2. Ряды
§ 3. Закон больших чисел
§ 4. Безгранично делимые распределения и центральная предельная теорема
§ 5. Стационарный случай
Глава IV. Процессы со взаимно некоррелированными или с ортогональными значениями
§ 1. Общие замечания
§ 2. Геометрический подход
§ 3. Общее определение проекции
§ 4. Ряды ортогональных случайных величин
§ 5. Закон больших чисел
§ 6. Степенные ряды вида
§ 7. Мартингалы в широком смысле
Глава V. Марковские процессы с дискретным параметром
§ 1. Цепи Маркова. Определение
§ 2. Конечные однородные цепи Маркова
§ 3. Сложные цепи Маркова
§ 4. Приложение к перемешиванию карт
§ 5. Обобщение результатов
§ 6. Закон больших чисел
§ 7. Центральная предельная теорема
§ 8. Марковские процессы в широком смысле
Глава VI. Марковские процессы с непрерывным параметром
§ 1. Цепи Маркова с конечным числом состоянии
§ 2. Обобщение результатов
§ 3. Диффузионные уравнения и соответствующие марковские процессы
Глава VII. Мартингалы
§ 1. Определения: мартингалы и полумартингалы
§ 2. Приложение к вероятностным играм
§ 3. Основные неравенства
§ 4. Теоремы о сходимости
§ 5. Приложение к суммам независимых случайных величин
§ 6. Приложение к усиленному закону больших чисел
§ 7. Приложение к интегрированию п бесконечномерном пространстве
§ 8. Приложение к теории производных
§ 9. Приложение к изучению отношения правдоподобия в математической статистике
§ 10. Приложение к последовательному анализу
§ 11. Мартингалы с непрерывным параметром
§ 12. Приложение теории мартингалов к выводу свойств непрерывности выборочных функций процессов некоторых типов
Глава VIII. Процессы с независимыми приращениями
§ 1. Общие замечания
§ 2. Процесс брауновского движения
§ 3. Физические приложения процесса брауновского движения
§ 4. Пуассоновский процесс
§ 5. Приложение пуассоновского процесса к распределениям молекул звезд
§ 6. Центрирование общего процесса с независимыми приращениями
§ 7. Вид функции распределения и свойство непрерывности выборочных функций
Глава IX. Процессы с ортогональными приращениями
§ 1. Свойства непрерывности
§ 2. Стохастические интегралы
§ 3. Приложение к выводу теоремы Кемпбелла
§ 4. Преобразование Фурье процесса с ортогональными приращениями
Обобщение стохастического интеграла, введенного в § 2
Глава X. Стационарные процессы с дискретным параметром
§ 1. Общие свойства: метрическая транзитивность
§ 2. Усиленный закон больших чисел для стационарных в узком смысл вероятностных процессов
§ 3. Корреляционная функция стационарного вероятностного процесса примеры
§ 4. Спектральное представление стационарного процесса
§ 5. Спектральные разложения
§ 6. Закон больших чисел для стационарных в широком смысле процессов
§ 7. Оценка функций R(v) и F(л) по выборочной последовательности
§ 8. Абсолютно 'непрерывные спектральные функции и спектральное суммирование
§ 9. Линейные операции над стационарными процессами
§ 10. Рациональные (относительно e2пi) спектральные плотности
Глава XI. Стационарные процессы с непрерывным параметром
§ 1. Общие свойства; метрическая транзитивность
§ 2. Усиленный закон больших чисел для стационарных и узком смысл вероятностных процессов
§ 3. Корреляционная функция стационарного процесса; примеры
§ 4. Спектральное представление стационарного процесса
§ 5. Спектральные разложения
§ 6. Закон больших чисел для стационарных в широком смысле процессов
§ 7. Оценка значений R (t) u F (л) по выборочным функциям
§ 8. Абсолютно непрерывные спектральные функции и скользящее суммирование
§ 9. Линейные операции над стационарными процессами
§ 10. Рациональные спектральные плотности
§ 11. Процессы со стационарными в широком смысле приращение
Глава XII. Наилучшее (в смысле метода наименьших квадратов) линейное прогнозирование стационарных в широком смысле процессов
§ 1. Общие принципы (случай дискретного параметра)
§ 2. Наилучший Линейный прогноз как полиномиальная аппроксимации
§ 3. Решение задачи о прогнозе для простейших случаев (случай дискретного параметра)
§ 4. Общее решение задачи о прогнозе (случаи дискретного параметра)
§ 5. Общее решение задачи о прогнозе (случай непрерывного параметр)
§ 6. Обобщения результатов 4 и 5
§ 7. Многомерное прогнозирование
Дополнение
§ 1. Поля точечных множеств
§ 2. Функции множества
§ 3. Сохраняющие меру преобразования
Приложение
Приложение переводчиков
Литература
Указатель