- Артикул:00-01049998
- Автор: Frederick Pearson
- ISBN: 978-0-8493-6888-2
- Обложка: Мягкая обложка
- Издательство: CRC Press (все книги издательства)
- Город: USA
- Страниц: 385
- Год: 1990
- Вес: 960 г
Книга на английском языке.
Frederick Pearson is the well known author of two previous works; "Map Projection Equations", and "Map Projection Methods". The present volume is a further attempt to move from the classical and theoretical to the modem and practical. In the present volume, projections of mainly historical value have been excluded. Projections of use in cartographic work have been emphasized, as well as those that are used in remote sensing, photogrammetry, and target tracking applications
Contents
1. Introduction
I. Introduction to the Problem
II. Basic Geometric Shapes
III. Distortion
IV. Scale
A. Example 1
B. Example 2
V. Feature Preserved in Projection
VI. Projection Surface
VII. Orientation of the Azimuthal Plane
VIII. Orientation of a Cone or Cylinder
IX. Tangency and Secancy
X. Projection Techniques
XI. Plotting Equations
XII. Plotting Tables
References
2. Mathematical Fundamentals
I. Introduction
II. Coordinate Systems and Azimuth
III. Grid Systems
IV. Differential Geometry of Space Curves
A. Example 1
B. Example 2
V. Differential Geometry of a General Surface
VI. First Fundamental Form
A. Example 3
B. Example 4
C. Example 5
D. Example 6
E. Example 7
VII. Second Fundamental Form
VIII. Surfaces of Revolution
IX. Developable Surfaces
X. Transformation Matrices
A. Example 8
XI. Mathematical Definition of Equality of Area and Conformality
XII. Rotation of Coordinate System
XIII. Convergency of the Meridians
A. Example 9
XIV. Constant of the Cone and Slant Height
A. Example 10
B. Example 11
References
3. Figure of the Earth
I. Introduction
II. Geodetic Considerations
A. Example 1
III. Geometry of the Ellipse
A. Example 2
IV. The Spheroid as a Model of the Earth
A. Example 3
B. Example 4
C. Example 5
V. The Spherical Model of the Earth
A. Example 6
B. Example 7
C. Example 8
D. Example 9
E. Example 10
F. Example 11
VI. The Triaxial Ellipsoid
References
4. Equal Area Projections
I. Introduction
II. General Procedure
III. The Authalic Sphere
A. Example 1
B. Example 2
IV. Albers, One Standard Parallel
A. Example 3
B. Example 4
V. Albers, Two Standard Parallels
A. Example 5
VI. Bonne
A. Example 6
VII. Azimuthal
A. Example 7
VIII. Cylindrical
A. Example 8
B. Example
IX. Sinusoidal
A. Example 10
B. Example 11
X. Mollweide
A. Example 12
B. Example 13
XI. Parabolic
A. Example 14
B. Example 15
XII. Hammer-Aitoff
A. Example 16
XIII. Boggs Eumorphic
XIV. Eckert IV
XV. Interrupted Projections
A. Example 17
References
5. Conformal Projections
I. Introduction
II. General Procedures
III. Conformal Sphere
A. Example 1
IV. Lambert Conformal, One Standard Parallel.
A. Example 2
V. Lambert Conformal, Two Standard Parallels
VI. Stereographic
A. Example 3
B. Example 4
VII. Mercator
A. Example 5
B. Example 6
C. Example 7
D. Example 8
E. Example 9
VIII. State Plane Coordinates
IX. Military Grid Systems
A. Example 10
References
6. Conventional Projections
I. Introduction
II. Summary of Procedures
III. Gnomonic
A. Example
B. Example 2
C. Example 3
N. Azimuthal Equidistant
A. Example 4
B. Example 5
V. Orthographic
A. Example 6
B. Example 7
C. Example 8
VI. Simple Conic, One Standard Parallel.
VII. Simple Conical, Two Standard Parallels
VIII. Conical Perspective
IX. Polyconic
A. Example 9
X. Perspective Cylindrical
A. Example 10
XI. Plate Carree
A. Example 11
XII. Carte Parallelogrammatique
A. Example 12
XIII. Miller
A. Example 13
XIV. Globular
XV. Aerial Perspective
A. Example 14
XVI. Vander Grinten
XVII. Cassini
A. Example 15
XVIII. Robinson
A. Example 16
References
7. Theory of Distortions
I. Introduction
II. Qualitative View of Distortion
III. Quantization of Distortions
IV. Distortions from Euclidian Geometry
V. Distortions from Differential Geometry
VI. Distortions in Equal Area Projections
A. Distortions in Length in the Albers Projection with One Standard Parallel
B. Distortions in Length in the Albers Projection with Two Standard Parallels
C. Distortion in Length in the Azimuthal Projection
D. Distortion in Length in the Cylindrical Projection
E. Distortion in Angle in Equal Area Projections
F. Example 1
G. Example 2
H. Example 3
VII. Distortion in Conformal Projections
A. Distortion in Length for the Lambert Conformal Projection, One Standard Parallel
B. Distortion in Length for the Lambert Conformal Projection, Two Standard Parallels
C. Distortion in Length for the Polar Stereographic Projections
D. Distortion in Length for the Regular Mercator Projection
E. Distortions in Area and Angle
F. Example 4
G. Example 5
H. Example 6
VIII. Distortion in Conventional Projections
A. Distortions in Length for the Polar Gnomonic Projection
B. Distortion in Length for the Polar Azimuthal Equidistant Projection
C. Distortion in Length for the Polyconic Projection
D. Distortions in Angle and Area
E. Example 7
F. Example 8
References
8. Mapping Applications
I. Introduction
II. Map Projections in the Southern Hemisphere
A. Example 1
B. Example 2
C. Example 3
III. Distortion in the Transformation from the Spheroid to the Authalic Sphere
IV. Distances on the Loxodrome
V. Tracking System Displays
VI. Differential Distances from a Position
References
9. Computer Applications
I. Introduction
II. Direct Transformation Subroutines
III. Inverse Transformation Subroutines
IV. Calling Program for Subroutines
V. State Plane Coordinates
VI. UTM Grids
VII. Computer Graphics
References
10. Uses of Map Projections
I. Introduction
II. Fidelity to Features on the Earth
III. Characteristics of Parallels and Meridians
IV. Considerations in the Choice of a Projection
V. Recommended Areas of Coverage
VI. Recommended Set of Map Projections
VII. Conclusion
References
Index