- Артикул:00-01048283
- Автор: Курош А.Г.
- Обложка: Твердый переплет
- Издательство: Наука (все книги издательства)
- Город: Москва
- Страниц: 432
- Формат: 60х90 1/16
- Год: 1968
- Вес: 615 г
- Серия: Учебное пособие для ВУЗов (все книги серии)
Высшая алгебра, изложению которой посвящена настоящая книга, представляет собой далеко идущее, но вполне естественное обобщение основного содержания школьного курса элементарной алгебры. Центральным в школьном курсе алгебры является, бесспорно, вопрос о решении уравнений. Как читатель помнит, изучение уравнений начинается с очень простого случая одного уравнения первой степени с одним неизвестным, а затем развивается в двух направлениях. С одной стороны, рассматриваются системы двух и трех уравнений первой степени с двумя и, соответственно, тремя неизвестными; с другой стороны, изучается одно квадратное уравнение с одним неизвестным, а также некоторые частные типы уравнений более высокой степени, легко сводящиеся к квадратным (биквадратные уравнения, например).
Оглавление
Предисловие к шестому изданию
Введение
Глава первая. Системы линейных уравнений. Определители
§ 1. Метод последовательного исключения неизвестных
§ 2. Определители второго и третьего порядков
§ 3. Перестановки и подстановки
§ 4. Определители n-гo порядка
§ 5. Миноры и их алгебраические дополнения
§ 6. Вычисление определителей
§ 7. Правило Крамера
Глава вторая. Системы линейных уравнений (общая теория)
§ 8. n-мерное векторное пространство
§ 9. Линейная зависимость векторов
§ 10. Ранг матрицы
§ 11. Системы линейных уравнений
§ 12. Системы линейных однородных уравнений
Глава третья. Алгебра матриц
§ 13. Умножение матриц
§ 14. Обратная матрица
§ 15. Сложение матриц и умножение матрицы на число
§ 16. Аксиоматическое построение теории определителей
Глава четвертая. Комплексные числа
§ 17. Система комплексных чисел
§ 18. Дальнейшее изучение комплексных чисел
§ 19. Извлечение корня из комплексных чисел
Глава пятая. Многочлены и их корни
§ 20. Операции над многочленами
§ 21. Делители. Наибольший общий делитель
§ 22. Корни многочленов
§ 23. Основная теорема
§ 24. Следствия из основной теоремы
§ 25. Рациональные дроби
Глава шестая. Квадратичные формы
§ 26. Приведение квадратичной формы к каноническому виду
§ 27. Закон инерции
§ 28. Положительно определенные формы
Глава седьмая. Линейные пространства
§ 29. Определение линейного пространства. Изоморфизм
§ 30. Конечномерные пространства. Базы
§ 31. Линейные преобразования
§ 32. Линейные подпространства
§ 33. Характеристические корни и собственные значения
Глава восьмая. Евклидовы пространства
§ 34. Определение евклидова пространства. Ортонормированные базы
§ 35. Ортогональные матрицы, ортогональные преобразования
§ 36. Симметрические преобразования
§ 37. Приведение квадратичной формы к главным осям. Пары форм
Глава девятая. Вычисление корней многочленов
§ 38. Уравнения второй, третьей и четвертой степени
§ 39. Границы корней
§ 40. Теорема Штурма
§ 41. Другие теоремы о числе действительных корней
§ 42. Приближенное вычисление корней
Глава десятая. Поля и многочлены
§ 43. Числовые кольца и поля
§ 44. Кольцо
§ 45. Поле
§ 46. Изоморфизм колец (полей). Единственность поля комплексных чисел
§ 47. Линейная алгебра и алгебра многочленов над произвольным полем
§ 48. Разложение многочленов на неприводимые множители
§ 49. Теорема существования корня
§ 50. Поле рациональных дробей
Глава одиннадцатая. Многочлены от нескольких неизвестных
§ 51. Кольцо многочленов от нескольких неизвестных
§ 52. Симметрические многочлены
§ 53. Дополнительные замечания о симметрических многочленах
§ 54. Результант. Исключение неизвестного. Дискриминант
§ 55. Второе доказательство основной теоремы алгебры комплексных чисел
Глава двенадцатая. Многочлены с рациональными коэффициентами
§ 56. Приводимость многочленов над полем рациональных чисел
§ 57. Рациональные корни целочисленных многочленов
§ 58. Алгебраические числа
Глава тринадцатая. Нормальная форма матрицы
§ 59. Эквивалентность Я-матриц
§ 60. Унимодулярные Я-матрицы. Связь подобия числовых матриц с эквивалентностью их характеристических матриц
§ 61. Жорданова нормальная форма
§ 62. Минимальный многочлен
Глава четырнадцатая. Группы
§ 63. Определение и примеры групп
§ 64. Подгруппы
§ 65. Нормальные делители, фактор-группы, гомоморфизмы
§ 66. Прямые суммы абелевых групп
§ 67. Конечные абелевы группы
Указатель литературы
Предметный указатель